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Abstract

A new approach to the theory of nonlinear chromatography is presented.
It applies to isotherms which are not too nonlinear, in which case it is shown
that the center of gravity of the peak moves at a relative velocity equal to
1/v2Z of the velocity of peak maximum. Equations relating peak retention
time, asymmetry, and peak shape in terms of the nonlinearity constant 8, plate
number N, and base capacity ratio k, are derived. The derived equations are
checked by comparing them with the exact answers obtained from the numeri-
cal solution of the differential equations of the plate model applied to the
nonlinear isotherm. The deviations are found to be small. It is also demon-
strated that for slightly nonlinear isotherms, the resulting peak shapes are
asymmetric Poisson distributions with asymmetries which can be calculated
from the above-mentioned parameters.

The theory of nonlinear chromatography is quite complex and the
differential equations involved have no analytic solutions. In spite of
simplifying assumptions, the derived equations are still difficult and not
too accurate.

Different approaches need to be explored. It is felt that simplifying
assumptions should be made from the start instead of starting with the
exact differential equations after which a succession of approximations
is made to get an equation of reasonable complexity. The validity of the
simplifying assumptions made is tested by comparing the derived equa-
tions with the results obtained from the numerical solution of the exact
differential equations. The plate theory applied to the nonlinear isotherm
should be a good means for testing these assumptions because it lends
itself to easy numerical solution, particularly when the plate model and
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not the stage model is used in the numerical analysis. In the plate model
(1), equilibrium is assumed to occur only at the plates while the mobile
phase moves continuously and without mixing between the plates.

The first application of the plate theory to the nonlinear isotherm was
made by this author and co-worker (2, 3). The numerical solution was
described and the computer output data were plotted. Qualitative and
semiempirical relations between the Langmuir constants and the asym-
metry of the resulting peaks were given. The paper was published only as
a company report.

Recently, a group of Russian scientists (¢) published some papers on
the same subject, namely on the application of the plate theory to the
nonlinear isotherm. They also used a high-speed computer for the numeri-
cal calculations, but details of the numerical solution and program were
not given. They presented curves which show the asymmetry of the peaks
for different nonlinearity constants. No attempt was made to deduce
quantitative relations between these constants and peak asymmetry.

In this paper the numerical solution is described and the FORTRAN
program is given. Tables and plots of the output data are presented. The
numerical solution is not given here as an alternative to analytic solutions
but as a means of testing assumptions made in the course of deriving
equations for the nonlinear isotherm.

DEVELOPMENT OF THE DIFFERENTIAL-DIFFERENCE
EQUATION FOR THE NONLINEAR ISOTHERM
ACCORDING TO THE PLATE MODEL

A differential material balance around plate » gives (/)

(Coey — C)dv = d(x,,%) )

C, is the concentration of solute in the mobile phase in equilibrium with
the solute adsorbed on plate n. v is the volume of mobile phase that has
crossed the plate from the start, x, is the concentration of solute in the
stationary phase on plate n, S is the total weight of the stationary phase,
and A is the total plate number.

We will be concerned with adsorption isotherms which are not too
nonlinear. In this case the Langmuir isotherm is sufficient so that

kOCn
T T18C, @

ko is the base capacity ratio (at zero concentration) and b is a constant.
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Substituting from Eq. (2) into Eq. (1) and making the following sub-
stitutions

X, = x,/x,°
u = Nv/Sk,
B = —bx,°lk,
where x,° is the initial concentration of solute on Plate 1, one finally gets
dX, X, X,
d T T+ BX,_, 1+ BX, &)
or
e Vo @

V, is the first backward difference with respect to .

NUMERICAL SOLUTION OF THE COMBINED
DIFFERENCE-DIFFERENTIAL EQ. (4)

We shall confine ourselves to the simple case where Plate 1 only is
loaded with solute at the start. In this case

S 2]
0 _—=
X L C,dv
If we define a relative effluent concentration by the formula
Yn = anO/xlo (5)
then
X’l
Yo =11 8x, (6)
and
j Y,du=1 @)
0

If the isotherm is linear f = 0 and Y, = X, the solution is the
Poisson distribution function, namely

Y,=e "= ®



13: 50 25 January 2011

Downl oaded At:

té SAID

For the general case where f§ # 0, there is no analytic solution but a
numerical solution is obtained as follows.
The boundary conditions of the problem are

1 forn=1
I X(n, 0) = {0 forn > 1

II X0,u)=0

Boundary Condition I states that the first plate only is loaded with
solute at the start and Boundary Condition II states that the concentra-
tion of solute in the mobile phase entering the column is always equal to O.

If X(n, u) is known, it is possible to calculate X(n, u + Au) using Taylor
series as follows:

(Auy?

X X(n,u) + - )

X(n,u + Au) = X(n, u) + AuX(n, u) +

X, X, ... are the first second, etc. derivatives of X with respect to u.
For higher derivatives we use the symbol X to denote the rth derivative.
Differentiating Eq. (4) leads to

X(n,u) = -V, (———-——-—1 oL (10)
Differentiating again, one gets
. X1 X) - 2BX?
X, u) = -V, U+ px) — 25 (11)

(I + Bx)’

and so on.
It is evident that in order to calculate X(n, u + Au), one needs the

values of X(n,u), X"(n,u), X(n — 1,u), and X(n — 1, u), but the
smaller the value of Au, the less the number of terms in Eq. (9) needed for
the same accuracy.

One deduces also that

111 X®0,u) =0, forr =0

which is the third boundary condition. We have now all the data, formulas,
and boundary conditions necessary for the numerical solution of Eq.
(4). The FORTRAN program is given in Table 1. Values of X were cal-
culated for u values up to 100 and for § = —0.4, —0.2, 0, +0.5. Table 2
gives a sample of the format, and Table 3 was prepared from the volu-
minous output data. Y values were deduced from the output X values
using Eq. (6). The value of § = 0 was included intentionally, even though
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TABLE 1
The FORTRAN Program for the Numerical Solution of Eq. (4)
0001 REAL*8 U, Ul,Y, Yl, Bl, B2, B3, B4, A}, A2, A3, X1, X2
0002 REAL*8 DLT
0003 DIMENSION Y(2, 201), Y1(201), C(3), U(2)
0004 READ(,1) (CO),I1=1,4),L
0005 1 FORMAT(4F4.1, 14)
0006 DO 100 M=1,4
0007 DLT = 0.01
0008 IX=0
0009 U() = 0.0
0010 DO 2 J=1,201
0011 2 Y1,DH)=00
0012 Y(1,2) =10
0013 WRITE(14) UQ), (Y(1, D, J =1, 25)
0014 WRITE(14) (Y1, D)), J = 26, 51)
0015 WRITE(4) (Y(1,D),J=52,77)
0016 WRITE(14) (Y1, 1), J =78, {01)
0017 WRITE(14) (Y(1,J), J = 102, 126)
0018 WRITE(14) (Y(1, D, J =127,152)
0019 WRITE(14) (Y(1,J)),J = 153, 178)
0020 WRITE(14) (Y(1, D, J =179, 201)
0021 DO 50 N=1,L
0022 U@2) = U(1) + DLT
0023 Y(2,1) =00
0024 Al = 0.0
0025 A2 =100
0026 A3 =00
0027 DO 60 J=1,200
0028 X1 = 1.0 + COMY*Y(1, D)
0029 X2 =104+ CM¥*Y(1,J+ 1)
0030 Bl = ((Y(1, D*1000.0)/X1) - ((Y(1, J + 1)*1000.0)/X2)
0031 Bl = B1/1000.0
0032 B2 = (((A1*1000.0)/X1)/X1) — (((B1*1000.0)/X2)/X2)
0033 B2 = B2/1000.0
0034 B3 = (A2*1000.0*X1 — 2000.0*A1*C(M)*ADN/(XI1*X1*X1) —
(B2*1000.0*X2 ~— 2000.0*B1*C(M)*B1)/(X2*X2*X2)
0035 B3 = B3/1000.0
0036 B4 = (((A3*1000.0¥X1 — 6000.0*C(M)*A1*A2)*X1) + (6000.0*

CM)*AI*C(M)*A1*A1))/(X1*X1*X1) — ((B3*1000.0*X2 —
6000,0*C(M)*B1*B2)*X2) + (6000.0*C(M)*B1*C(M)*B1*B1))/

(X2*X2*X2)
0037 B4 = B4/1000.0
0038 Y(2,J + 1) = Y(1, T + 1)*1000.0 + DLT*1000.0*B1 + ((DLT*

1000.0*B2)/2.0)*DLT) + ((DLT*1000.0*DLT*B3)/6.0)*DLT) +
((DLT*1000.0*B4*DLT)/6.0)*(DLT/4.0)*DLT)

0039 Y2, 7 + 1) = Y(2,J + 1)/1000.0

0040 Al = B1

0041 IF(YQ,J + 1).LT.00) Y2, J+1) =00
0042 A2 = B2

(continued)
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TABLE 1 (continued)

SAID

0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064

0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090

60

70

50

A3 = B3
CONTINUE

WRITE(14) U(Q), (Y(2,J),] =1, 25)
WRITE(14) (Y2, J), J = 26, 51)
WRITE(14) (Y2, 1), T = 52, 77)
WRITE(14) (Y(2, ), J = 78, 101)
WRITE(14) (Y(2,J), J = 102, 126)
WRITE(14) (Y(2, )),J = 127, 152)
WRITE(14) (Y(2,J), J = 153, 178)
WRITE(14) (Y(2, T), J = 179, 201)
U(1) = UQ@)

DO 70 J=1,201

Y1, = Y2, D)

IF (N.EQ.10) DLT = 0.1

IF (N.EQ.19) DLT = 1.0
CONTINUE

END FILE 14

REWIND 14

WRITE(G3, 3) C(M)

FORMAT('I’, 10X, ‘BETA =", F4.1, /)
WRITEG, 4)

FORMAT(X, “(UY, 6X, ‘PLATE()’, 1X, ‘PLATE( + N, 1X,
‘PLATE(l + Ny, 1X, ‘PLATEQ2 + NJ, IX, ‘PLATE(3 + Ny,
1X, ‘PLATE(4 + Ny, 1X, ‘PLATE(S +N)’, 1X, ‘PLATE(6 + N)’,
1X, ‘PLATE(7 + NY, 1X, ‘PLATE(8 + N), 1X, ‘PLATE(9 + N))

DO 200 I1=1,L
READ(14, END = 300) Ul, (YI(), J = 1, 25)
IF (Y1(2).LT.0.00009) IX =1

READ(14, END = 300) (Y1(J), J = 26, 51)
READ(14, END = 300) (Y1(J), J = 52, 77)
READ(14, END = 300) (Y1(J), J = 78, 101)
READ(14, END = 300) (Y1(J), J = 102, 126)
READ(14, END = 300) (Y1(J), J = 127, 152)
READ(14, END = 300) (Y1(J), J = 153, 178)
READ(14, END = 300) (Y1(J), J = 179, 201)
WRITEG, 5) Ul (Y1Q),J = 1, 11)
FORMAT(//, 1X, F6.2, 2X, 11(F10.4, 1X), 2X)

IF (Y1(12).LT.0.00009.AND.IX.EQ.0) GO TO
IF  (Y1(12).GT.0.00009) IX =0

WRITEQG, 6) (Y1), J = 12, 21)

IF (Y1(22).LT.0.00009.AND.IX.EQ.0) GO TO
IF  (Y1(22).GT.0.00009) IX =0

WRITE(3, 6) (Y1(J), J = 22, 31)

IF (Y1(32).LT.0.00009.AND.IX.EQ.0) GO TO
IF  (Y1(32).GT.0.00009) IX =0

WRITEG, 6) (Y1(J), J = 32, 41)

IF  (Y1(42).LT.0.00009.AND.IX.EQ.0) GO TO
IF  (Y1(42).GT.0.00009) IX =0

WRITEG, 6) (Y!1(J),J = 42, 51)

IF (Y1(52).LT.0.00009.AND.IX.EQ.0) GO TO
IF  (Y1(52).GT.0.00009) IX =0

400

400

400

(continued)
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TABLE 1 (continued)

0091 WRITEG, 6) (Y1{J), J = 52, 61)

0092 IF (Y1(62).LT.0.00009.AND.IX.EQ.0) GO TO 400
0093 IF  (Y1(62).GT.0.00009 IX =0

0094 WRITEG, 6) (Y1), J = 62, 71)

0095 IF (Y1(72).LT.0.00009.AND.IX.EQ.0) GO TO 400
0096 IF  (Y1(72).GT.0.00009) IX =0

0097 WRITEG, 6) (Y1(J), J = 72, 81)

0098 IF (Y1(82).LT.0.00009.AND.IX.EQ.0) GO TO 400
0099 IF  (Y1(82).GT.0.00009) IX =0

0100 WRITE(3, 6) (Y1(J), T = 82, 91)

0101 IF (Y1(92).LT.0.00009.AND.IX.EQ.0) GO TO 400
0102 IF (Y1(92).GT.0.00009) IX =0

0103 WRITEG, 6) (Y1(J), J = 92, 101)

0104 IF (Y1(102).LT.0.00009.AND.IX.EQ.0) GO TO 400
0105 IF  (Y1(102).GT.0.00009) IX =0

0106 WRITE(3, 6) (Y1{), T = 102, 111)

0107 IF (Y1(112).LT.0.00009.AND.IX.EQ.0) GO TO 400
0108 IF  (Y1(112).GT.0.00009) IX = 0

0109 WRITEG, 6) (Y1(J), J = 112, 121)

0110 IF (Y1(122).LT.0.00009.AND.IX.EQ.0) GO TO 400
0111 IF  (Y1(122).GT.0.00009) IX =0

0112 WRITEQG, 6) (Y1(), J = 122, 131)

0113 IF (YI(132).LT.0.00009.AND.IX.EQ.0) GO TO 400
o114 IF  (Y1(132).GT.0.00009) IX =0

0115 WRITEG, 6) (Y1(J), J = 132, 141)

0116 IF (Y1(142).LT.0.00009.AND.IX.EQ.0) GO TO 400
0117 IF  (Y1(142).GT.0.00009) IX =0

0118 WRITEG, 6) (Y1(J), J = 142, 151)

0119 IF (Y1(152).LT.0.00009.AND.IX.EQ.0) GO TO 400
0120 IF  (Y1(152).GT.0.00009) IX =0

0121 WRITEG, 6) (Y1(3), J = 152, 161)

0122 IF (Y1(162).LT.0.00009.AND.IX.EQ0) GO TO 400
0123 IF  (Y1(162).GT.0.00009) IX =0

0124 WRITEG, 6) (Y1(J), J = 162, 171)

0125 IF (Y1(172).LT.0.00009.AND.IX.EQ.0) GO TO 400
0126 IF  (YI(172).GT.0.00009) 1X =0

0127 WRITEG, 6) (Y1(J), J = 172, 181)

0128 IF (Y1(182).LT.0.00009.AND.IX.EQ.0) GO TO 400
0129 IF  (Y1(182).GT.0.00009) IX =0

0130 WRITEG, 6) (Y1(J), J = 182, 191)

0131 IF (Y1(192).LT.0.00009.AND.IX.EQ.0) GO TO 400
0132 IF  (Y1(192).GT.0.00009) IX =0

0133 WRITEG, 6) (Y1(J), J = 192, 201)

0134 6 FORMAT(20X, 10(F10.4, 1X), 2X)

0135 400 CONTINUE

0136 200 CONTINUE

0137 300 END FILE 14

0138 100 CONTINUE

0139 STOP

0140 END
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FiG. 1. Elution curve shapes for different values of the nonlinearity factor
B, n=20.

it leads to the tabulated Poisson distribution function, in order to check
the accuracy of the output data. Figures 1 and 2 are plots of data from
Table 3.

THE PRESENT THEORY

The present theory will be mainly concerned with slightly nonlinear
isotherms. This might seem to represent a limited number of cases, but
at the very low concentrations encountered in chromatography, a large
number of separations should belong to this case.

A slightly nonlinear isotherm is not only represented by Eq. (2) but the
value of bC, is also small enough compared to | so that

kOCn ~
n = 1 + an = kOCn(l - bcn) (12)

X

Considering the movement of the peak along the column as a whole,
one deduces that different points of the peak will be moving at different
velocities which depend on the concentration. In the usual case where b
in Eq. (2) is positive or § in Eq. (3) is negative, the maximum point will
be moving at a higher velocity than the center of gravity of the peak which
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in turn will be moving at a velocity higher than the base velocity cor-
responding to zero concentration. On the other hand, in the not too
common cases where b is negative, the maximum point will be moving at
a velocity less than that of the center of gravity which moves at a velocity
less than the base velocity. It will be shown that as long as bx, « 1 and
regardless of the value of b, the center of gravity of a chromatographic
peak moves at an instantaneous relative velocity (relative to the base
velocity) equal to 1//2 or 0.7 of the instantaneous relative velocity of the

peak maximum.

The velocity « of any point in the peak is related to the velocity of the
mobile phase u, by the refation

Similarly, for the base velocity u,:

therefore

Uy = U,

1 + &
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1+ k,
=TTk
ko
k‘1+bC

Applying Eq. (12), one can show that

u= u0<l +—kL—bC)

1+ kg
or
= u(l — B C) 13)
where
ko
b= 1370

Bin Eq. (13) is essentially the same as f in Eq. (3) except for the difference
in plate model.
The velocity of the peak maximum is

Uy = uo(l - ﬁcm) (14)

The velocity of the center of gravity is

u, = [ Q) dx/j. Cdx (15)
Substituting for u from Eq. (13), one gets
j C?dx
U =ty ~ pp—— (16)
[ Cdx
but the y coordinate y, of the center of gravity of a peak is given by
1 e 2] aax
yc=§j Czdx/j Cdx (17
leading to
u, = ug — 2Py, (18)

Y. is the y coordinate of the center of gravity of the peak.
From Eqgs. (14) and (18) one gets
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U, — Ugy
m = 2/". (19)
r. is the fractional height of the center of gravity of the peak.

(u, — uo)/(u,, — ug) is the ratio between the relative velocities of center
of gravity and peak maximum. Table 4 lists values of r, for different
hypothetical peak shapes.

Asymmetry has no effect on the value of r, as long as the width at any
height ratio r is the same as shown in Fig. 3.

r. for the Poisson Distribution

Applying Formula (17) on the Poisson distribution,

.
y=e'— (19a)
TABLE 4

Values of the Center of Gravity Height Ratio r. for Different Hypothetical
Peak Shapes

Shape Or Formula Sketch e

e* /K 3 - 02%

triangle /\ { - o3m
~_normal /1\ |

distrbution /R s - 0. 354

cos® x % = 0.375

cos x /r\ I - o393
ﬁi\ a

x{l-x) £ - 0400

. /- \ A - 0.424

half circle T :
rectongle _l:: zl = 0.500
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YaX(1-X)4 Y= x41-x)

r, 2 0.376

Y+(—)-a
luz
e = 35 = 0.424

i'"u—"**“—fi—""‘_&:_"

F1G. 3. Some hypothetical peak shapes. Asymmetry has no effect on r..

TABLE 5

List of r. Values for the Poisson Distribution of Different Asymmetries

n ¥e

.346
.349
.350
.351
353
354

8oupwwm

it can be shown that

__@nte”
c = 22n+2(n!)nn

The value of r, is listed for different values of »n in Table 5.

Table 5 shows that r, for a very asymmetric Poisson distribution (n =
2) varies only slightly from r, for the symmetrical normal distribution
(n = «). One concludes that r, for asymmetric chromatographic peaks
where the asymmetry is due to nonlinearity of the adsorption isotherm is
equal to 0.35, in which case Eq. (19) becomes

r

20)
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Ue = Yo _ g L

U, — U N

(14

@n

[

Peak Retention Time

As the peak moves along the column, the peak maximum C,, decreases
and accordingly the velocity of peak maximum and center of gravity must
also decrease (for negative f). Integration is needed to calculate ¢,,, the
retention time of peak maximum, so that

Lal
tom = L 0 22)

Substituting from Eq. (14) gives

L dl
= |7 ¢

The relation between C,, at any length / and C,, the maximum con-
centration at the column outlet, is known for the case of the linear iso-
therm and should apply also for the slightly nonlinear isotherm and there-
fore

L
C, = Cf\/7 (24)
Substituting in Eq. (23) and applying Eq. (12) gives
L dl L L
by = jo u—0<1 + ﬂC,\/7> = ;;(l + 2/3Cf)
or
trm = trmo(l + 2ﬁ(jf) (25)

Similarly for the center of gravity retention time:

t,, = tm°<1 + :/2—5 ﬁcf> (26)

From Egs. (25) and (26):
trco = Il 1

trmU - trm - TZ

From the first and second moments of the Poisson distribution, one can
easily show that

@7
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tL —1,°=1 (28)

rc rm

and that the standard deviation

g=n+1 29)

From Egs. (27) and (28) one gets

J-

l [4]
trc — L = I+ T({rm - trm)

or

Le = bim = 1+ 0.3(1,,,,0 - trm) (30)

VALIDITY OF THE DERIVED EQUATIONS

To check the validity and accuracy of the derived equations, one
compares the results obtained from the derived equations with those
obtained from the numerical solution of the exact differential equations.
As an example, one might compare the value of ¢,,, obtained numerically
with the value calculated from Eq. (25). For values of N = 20, 40, 60,
and 80, #,,° is equal to 19, 39, 59, and 79, respectively, as can be seen
from Table 3 and also as can be deduced theoretically when f = 0. For
B = —04and g = +0.5, the values of ¢, and C, must be obtained by
interpolation from the data in the same table. In this respect, one makes
use of the fact that around the maximum point, a normal or Poisson
distribution is approximated quite closely by a parabola leading to the
following relations:

x 1 Y1 — Y2
T 31
PAal R (s gy g, S
and
x(y, =y
ym=y1+;;<——yz4 3) (32)

¥y, Y2, and y; are the three largest ordinates in descending order, 4 is the
constant spacing between the ordinates, and x is the distance between
peak maximum y,, and the largest ordinate y,.
For example, to determine #,,, and Cfor N = 20 and § = —0.4 from
data in Table 3, one finds y, = 0.0951, y, = 0.0943, y, = 0.0905. Therefore

0.0
=1_ —008___ =035
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TABLE 6

Comparison between Calculated and Exact Values of the Retention Time t,,

f=—04 B— +0.5

t",, Lym trm trm
N tem® C; exact  from Eq. (25) Cy exact from Eq. (25)
20 19 0.0954 17.65 17.55 0.0859 20.67 20.63
40 39 0.0658 37.03 36.95 0.0612 4143 41.39
60 59 0.0533 56.59 56.49 0.0500 62.00 61.95
80 79 0.0458 76.17 76.10 0.0434 82.50 82.43
also

0.0038
Ym = 0.0951 + 0.35<—T) = 0.0954

and hence

nm=m—%=w—aw=rm5

Cs = yn = 0.0954

Table 6 compares values of ¢, calculated from Eq. (25) with exact
values of ¢,,, obtained by interpolation in Table 3. One finds that the two
values do not differ significantly, showing that the assumptions leading
to Eq. (25) are satisfactory.

ASYMMETRY OF THE POISSON DISTRIBUTION

Figure 4 is a plot of the Poisson distribution for different values of .
It shows that the asymmetry increases as » decreases. It has been estab-
lished that the Poisson distribution represents the effluent curve for the
linear isotherm, in which case » is the number of theoretical plates which
is quite large and therefore the asymmetry is very small.

Figures 1 and 2 show that the effluent curves in the case of the nonlinear
isotherm also look like Poisson distributions of different asymmetries,
in which case n is a measure of the asymmetry and not a measure of the
number of theoretical plates. A convenient measure of the asymmetry of
the Poisson distribution is the ratio (¢,, — ¢,,,)/0, where ¢ is the standard
deviation. For the Poisson distribution represented by Eq. (19a), t,. —
t,n = 1 and 0 = /n + 1, and hence the asymmetry 4, is given by

a/ 1
A — re rm= 33
vy (33)
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FiG. 4. Plot of the Poisson distribution for different values of n.

FITTING A POISSON DISTRIBUTION TO THE
EFFLUENT CURVE OF A NONLINEAR ISOTHERM

The shape of the curves in Figs. 1 and 2 suggests that a negative § leads
to more asymmetric Poisson distributions, and in the case of positive f,
distributions having asymmetries of the opposite sign are obtained. In
other words, the effect of a negative f is to convert the Poisson distribution
corresponding to 8 = 0 and # equal to the number of theoretical plates
to another more asymmetric distribution having a smaller » which is a
measure of the asymmetry and not of the number of theoretical plates.
If this is true, it would be possible to fit Poisson distributions to computer
output data for nonlinear isotherms. For the not too common cases where
B is positive, one might fit distributions which are mirror images of the
Poisson distribution. Because such cases are very seldom encountered in
practice, no effort will be made here to undertake this task.

We will be concerned here with fitting a Poisson distribution to one of
the curves tabulated in Table 3; namely, the curve corresponding to N =
80 and § = —0.4. Applying Eq. (30) and using data in Table 5 gives
—tm =1+ 03079 — 76.17) = 1.85

trc

Assuming that the standard deviation of the original distribution did not
change much from that for the linear isotherm, then
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Xm= 22
U+ 76.17

) [ [\

o 10 x 20 30
X0 Xev 23
U 3547 U= 77.85

FIG. 5. The Poisson distribution which fits the effiuent curve for N = 80, g =
—0.4,

=79 + 1

and the asymmetry of both the original distribution and the fitting dis-

tribution is the same so that
i
4 = te — tom 1.85 1
=

e P+ 1 Jr 1
n' is the value of n for the fitting distribution. The curve of the original

distribution is a plot of concentration ¢ vs u as shown in Fig. 5, with the
maximum c; equal to 0.0458 at u,, = 76.17

(34

X
C = ae o (35)
Solving for »’ in Eq. (34) gives
n = 2237

If the assumptions made in the derivation of Eq. (25) are valid, it
should be possible to fit a Poisson distribution having # = 22.37 to the
data obtained numerically for ¥ = 80 and f = —0.4. A non- integer
value of n is mathematically possible with the application of Stirling’s
Formula.
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_ 1
| = ¢~ " —_
n!l=e¢"n \/27m<1 + 12”)

For convenience and because the difference is small, a Poisson distribution
having n = 22 will be fitted to the data. The fitting distribution is therefore
represented by the equation

x22

22!

’ —

¢ = Qe

with the maximum ¢, equal to 0.0458 at x,, = 22. For the sake of com-
parison, one axis is used for both » and x coordinates as shown in Fig, 5,
Since one unit on the x-axis is equal to 1.85 units on the u-axis and both
¢, and x,, are made to coincide with ¢, and u,, then the following relation
holds:

76.17 — u
x =22 — 1—85_ (36)

because the peak maximum is at x,, = 22. Then

2222
0.0458 = ae‘“jz—!
from which
a = 0.5405
and the equation for the fitting Poisson distribution becomes
x22
C= 0.5405e‘x5ﬂ 37

Table 7 compares values of C calculated from Eq. (37) with the exact
values calculated numerically for N = 80 and § = —0.4. The data are
plotted in Fig. 5. The two curves differ only slightly and may be represented
practically by one curve as shown in the figure,

CONCLUSION

Nonlinear adsorption isotherms lead to asymmetric effluent curves.
When the nonlinearity is slight, the shape of the resulting curves is close
to that of a Poisson distribution. Knowing the base capacity ratio kg,
the nonlinearity constant 8, and the number of theoretical plates N, it
is possible to determine the retention time and effluent curve equation in
the form of an asymmetric Poisson distribution.
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TABLE 7

Comparison between Calculated and Exact Values of the Concentration
Parameter C

C
u X Exact, for N = 80, f = —0.4 C = 0.5405¢~*(x22)22")
58 12.18 0.0023 0.0019
60 13.26 0.0045 0.0042
62 14.34 0.0079 0.0079
64 15.42 0.0131 0.0133
66 16.50 0.0196 0.0200
68 17.58 0.0269 0.0274
70 18.66 0.0342 0.0346
72 19.75 0.0402 0.0405
74 20.83 0.0443 0.0443
76 21.91 0.0458 0.0458
76.17 22.00 0.0458 0.0458
78 22.99 0.0447 0.0448
80 24,07 0.0418 0.0418
82 25,15 0.0372 0.0372
84 26.23 0.0320 0.0320
86 27.31 0.0265 0.0263
88 28.39 0.0212 0.0210
90 29.48 0.0164 0.0162
92 30.56 0.0124 0.0121
94 31.64 0.0089 0.0088
96 32.72 0.0063 0.0063
98 33.80 0.0043 0.0044
100 34.88 0.0029 0.0030

The fact that the tailing of practical peaks may differ from that pre-
dicted from a Poisson distribution is due to other factors like overloading,
extracolumnar effects, or excessive nonlinearity of the isotherm.
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